
Well-being through work

Fluid infusion and oxygen administration in cold conditions

Sirkka Rissanen Physical Work Capacity team

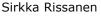
European Union European Social Fund

Introduction

- tourists and hikers trek in remote wilderness
- in the case of accident medical treatments may take place on site in the cold
- intravenous fluids are administered to trauma patients as treatment for hypovolemia, hypotension, shock, dehydration or hypothermia
- supplemental oxygen is of great benefit to a patient with severe trauma and/or hypothermia

Do medical treatments cool the patient in cold?

Patients may be treated with substances colder than core temperature in the pre-hospital settings


infusion of cold fluids

innish Institute of

Occupational Health

- decrease in body heat content risk of hypothermia?
 - 1 liter of 20 ° C fluid decreases core temperature by 0,3 ° C
- local cooling \rightarrow pain and/or vasoconstriction
- ventricular fibrillation
- inhibition of blood clotting
- cold oxygen administration
 - decrease in body heat content?
 - local cooling \rightarrow bronchoconstriction?
- Need of protection or warming?

to examine the effects of cold environment on

- infusion fluid temperature when different infusion line protective covers are used
- 2. upper respiratory track temperature when supplemental oxygen is administered

Tourism Safety, Rovaniemi 18.4.2012

Sirkka Rissanen

5

Warm IV fluid is recommended in cold

recommendations

- warmed 37 41° C IV fluids in the treatment of trauma patients
- bowever, at the accident site in the cold
 - cooling of the IV fluid during infusion is presumed

Tourism Safety, Rovaniemi 18.4.2012

Sirkka Rissanen

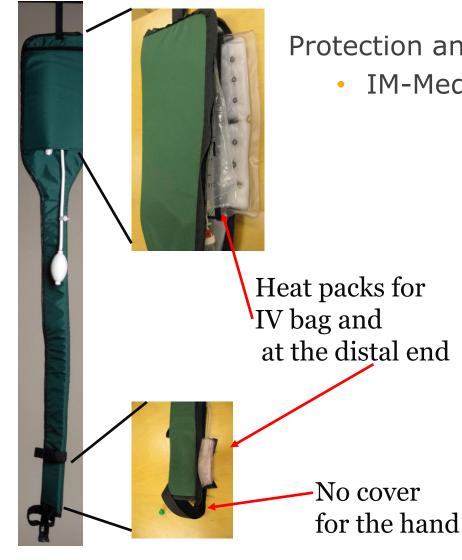
6

Example 1 of preventive methods

Protection of the infusion line

- Help&Rescue
- padded insulation around the bag and line

Distal end can be wrapped around the cannulated hand


7

Tourism Safety, Rovaniemi 18.4.2012

Sirkka Rissanen

Example 2 of preventive methods

Traditional hanging type

Finnish Institute of

Occupational Health

Protection and external heating

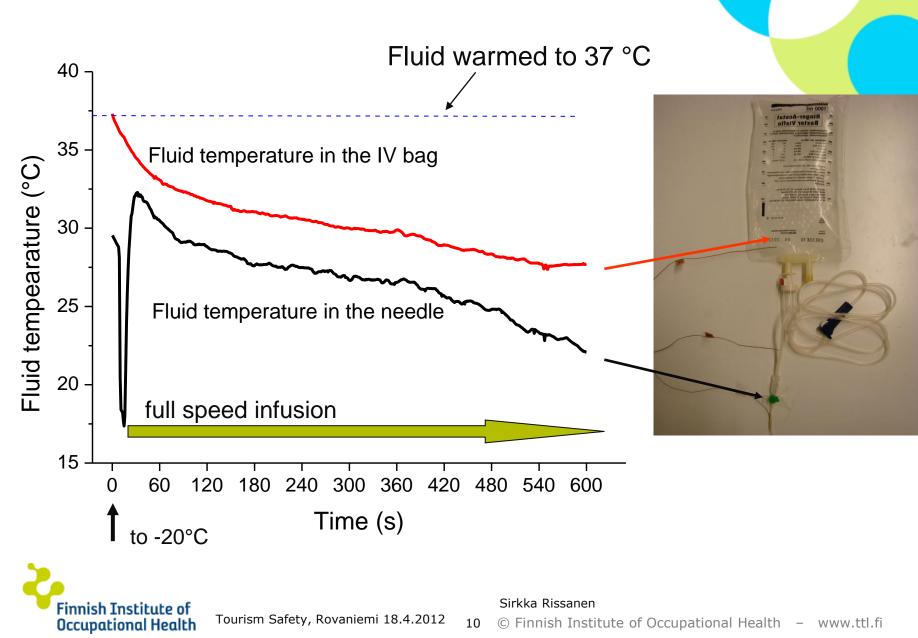
IM-Medico

Tourism Safety, Rovaniemi 18.4.2012 8 Sirkka Rissanen

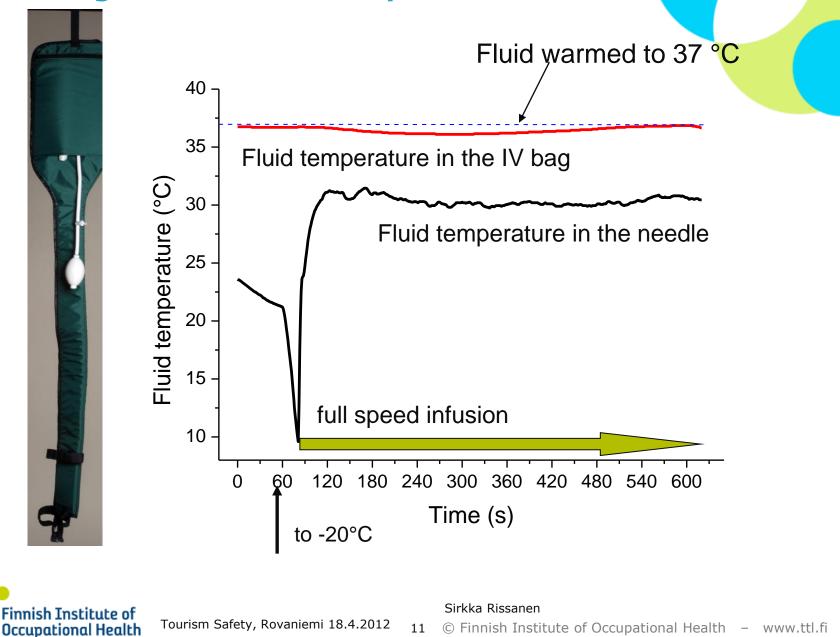
Example 3 of preventive methods

Protection and external heating

Heat-it


Pressure pouch for the IV bag

Heat pack under the arm, not beside the IV bag


Arm is wrapped inside

Rapid cooling without protection at -20° C

Cooling rate slower with protection at -20°

Summary

Fluid temperature, warmed to 37°C, after 10 min infusion at -20, 0 and 20°C,

	-20°C		0° C		20° C	
	bag	needle	bag	needle	bag	needle
	37	31	38	33	40	36
	35	33	35	34	37	37
	30	31	33	34	37,5	35
Finnish Institute of	27	22	32 Sirkka Ris	28	34	34

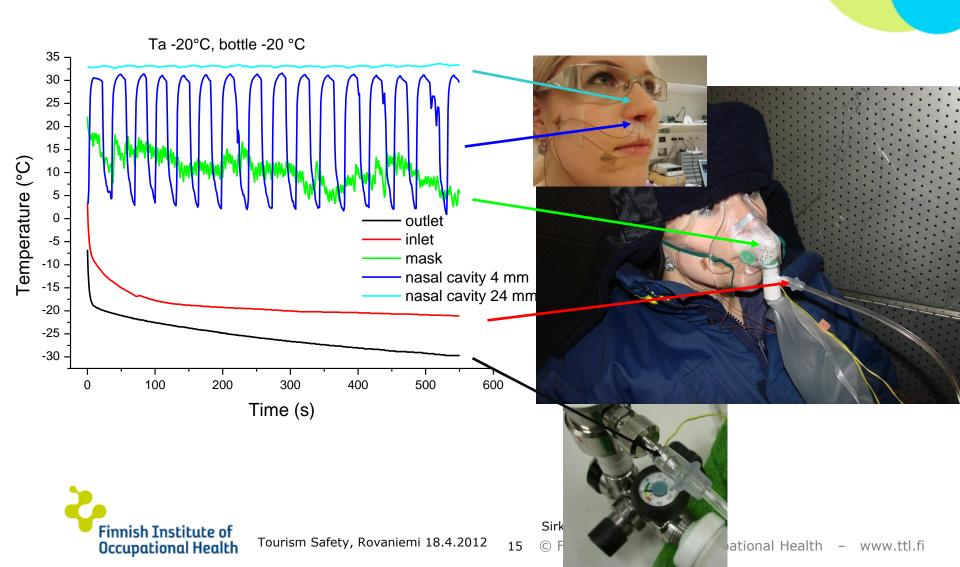
Occupational Health Tourism Safety, Rovaniemi 18.4.2012

Summary

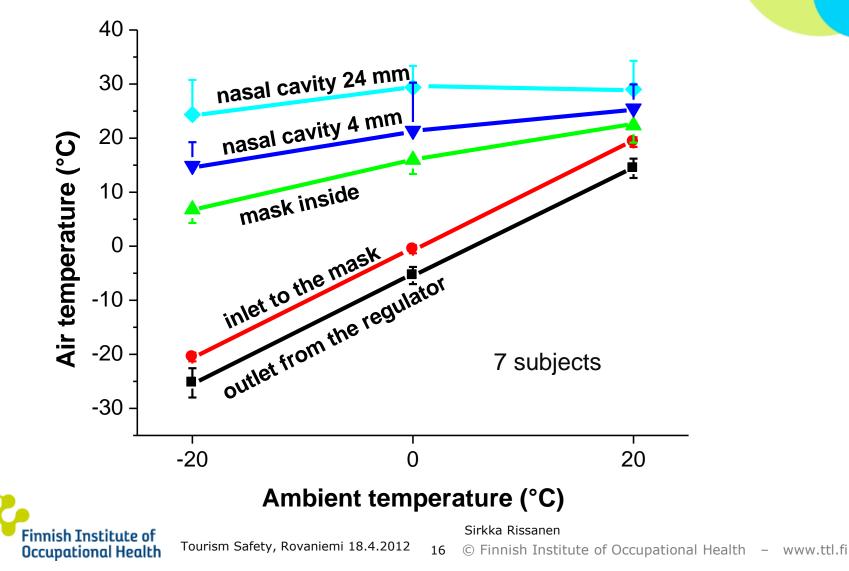
Fluid temperature, 22°C, after 10 min infusion at -20, 0 and 20°C,

	-20° C		0° C		20° C	
	bag	needle	bag	needle	bag	needle
	24	16	25,5	22	28	27,5
	20	18	20	20	22	22
	19,5	14,5	20	17,5	31	23
	. 17	8	18,5	17	22	22
Finnish Institute of Occupational Health	Tourism Safety, Rovaniemi 18.4.2012		Sirkka Rissanen 13 © Finnish Institute of Occupational Health – www.ttl.fi			

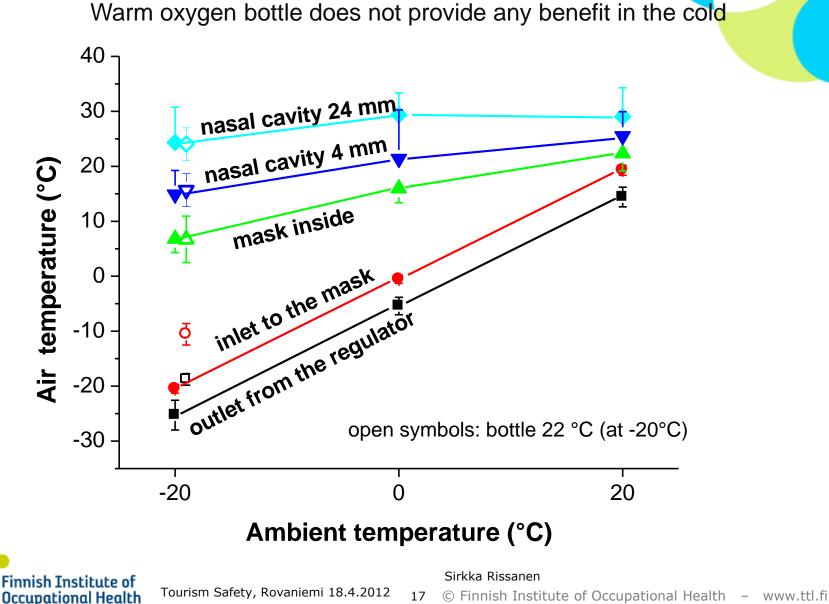
Oxygen administration in the cold was tested


Methods

- 7 subjects
- ambient temperatures: -20, 0 and 20 $^\circ\,$ C
- oxygen bottle and the regulator stored at the exposure temperatures
 - in addition: warm bottle and the regulator at -20 $^\circ\,$ C
- breathing through the nose
- gas flow 15 l/min


Air temperature was measured at 5 sites

Cold oxygen does not cool the air temperature in the nasal cavity at the depth of 24 mm



Cold oxygen bottle in the cold

Mask is a heat and moisture exchanger - air temperature increases to the safe level

Warm oxygen bottle in cold

General conclusions

- Thermal protection of the IV fluid is important in pre-hospital trauma care in the remote wilderness in cold conditions
- Oxygen administration is safe in the cold conditions

Sirkka Rissanen

18

Thank you!

This study is part of EU funded project: CoSafe -The Cooperation for safety in sparsely populated areas

www.cosafe.eu

Also supported by EU funded project: Protection and safety of travellers and tourism workers

www.ttl.fi/matkasutu

19

European Union European Social Fund

Centre for Economic Development, Transport and the Environment

Sirkka Rissanen

Finnish Institute of **Occupational Health**

Tourism Safety, Rovaniemi 18.4.2012

© Finnish Institute of Occupational Health – www.ttl.fi

Conclusions

- Fluid with high heat capacity is a risk for trauma patient in the cold
 - Heat capacity of water is ca. 4.2 J·cm⁻³·K⁻¹
 - with 20° C fluid temperature, the "cold load" of 1000 ml infusion would be 7100 J, core temperature decreases by ca. 0.3° C
- Gas has low heat capacity and therefore low temperature of oxygen is not a thermal risk for a patient
 - Heat capacity of air is ca. 0.0013 J·cm⁻³·K⁻¹
 - with -20° C gas temperature, the theoretical "cold load" of 150 I of gas (given in 10 min) would be 800 J, compared to breathing air at 20° C
 - due to the low heat capacity, the gas temperature may quickly change in tubes \rightarrow no effects on inhaled gas temperature

Sirkka Rissanen